
Introducing Parallel Pixie Dust
ACCU-London June 2009

Updated from the ACCU'09 Conference!

Jason McGuiness1

http://libjmmcg.sourceforge.net/

17th June 2009

1Copyright © J.M.McGuiness, 2009.

Sequence of Presentation.

I An introduction: why I am here.

I Why do we need multiple threads?

I Multiple processors, multiple cores....

I How do we manage all these threads:

I libraries, languages and compilers.

I My problem statement, an experiment if you will...

I An outline of Parallel Pixie Dust (PPD).

I Important theorems.

I Examples, and their motivation.

I Conclusion.

I Future directions.

Introduction.

Why yet another thread-library presentation?

I Because we still �nd it hard to write multi-threaded programs
correctly.

I According to programming folklore.

I We haven't successfully replaced the von Neumann
architecture:

I Stored program architectures are still prevalent.

I The memory wall still a�ects us:

I The CPU-instruction retirement rate, i.e. rate at which
programs require and generate data, exceeds the the memory
bandwidth - a by product of Moore's Law.

I Modern architectures add extra cores to CPUs, in this
instance, extra memory buses which feed into those cores.

Why do We Need Multiple Threads?

The memory wall is a major in�uencing factor:

I A de�nition of the memory wall is the e�ect that one gets
when the rate at which a processor may retire instructions
exceeds the bandwidth of the memory sub-system.

I The use of Amdhal's law has been highly e�ective in
concealing this issue: 90% of the time only 10% of the code
(or data) is used.

I Another factor is locality of data both in space and time.

I This means that cache hierarchies work very e�ectively.
I But cache hierarchies do not overcome the latency of memory

access, just the bandwidth.
I As the gap between memory bandwidth and processor

instruction retirement rates has widened, caches have become
larger and the hierarchies deeper to cope.

I So they have become more expensive.

How to Achieve Greater Instruction-Retirement Rates?

The increase in cost has meant alternatives have become viable:

I Such as the use of multiple processors & multiple cores.

I Which may be logically viewed as multiple execution units
retiring instructions.

I We now have n-cores retiring instructions, et voilà, we have
increased the instruction retirement rate.

I If we can keep the n execution units running.

I So now we have some sort of thread of execution, either
architectural or OS-level, or a hybrid.

I These threads need to be managed. Therein the problems lie...

How many Threads?

The future appears to be laid out: inexorably more execution units.

I For example quad-core processors are becoming more popular.

I 4-way blade frames with quad cores provide 16 execution units
in close proximity.

I picoChip (from Bath, U.K.) has hundreds of execution units
per chip, with up to 16 in a network.

I Future supercomputers will have many millions of execution
units, e.g. IBM BlueGene/C Cyclops.

The Problems with Threading: a Brief Review.

Let's leave aside the maxim: �The �rst rule of optimization is don't
do it. The second rule is don't do it yet.�
We'll presume we need to create threads. Creating threads is
easy!!! (_beginthreadex(), pthread_create(), etc...)

I But synchronizing access to the data they mutate is hard:

I Problem: race-conditions or deadlocks may arise. i.e. ensuring
that the threaded code will run correctly for all �reasonable�
data inputs is problematic, and e�ectively impossible.

I Ensuring that the threaded code runs an e�cient schedule is
usually just ignored.

I Folklore not just in computer-science but in general
programming, states that writing correct multi-threaded
programs is a black art.

I do not disagree!

How do We Solve these Problems?
I There are various attempts to solve the threading problem:

I Language level:
I e.g. HPF and UPC or Threaded-C: highly successful but

restricted domains.

I Library level:
I e.g. PThreads, Win32, Open-MP and MPI: very low-level,

usually supporting very primitive threading-related operations.
I Intel Thread Building Blocks and Concurrent Collections -

very interesting, but not the subject of this talk.
I Boost.Thread - in�uenced by the C++0x standardization

e�ort, and Anthony Williams' excellent work, amongst others.

I Auto-threading compilers:
I e.g. MSVC and IBM VisualAge currently support a limited

form of Open-MP relating to loop scheduling.
I e.g. HPF, EARTH-C. These generate guaranteed correct and

optimal schedules! But few outside the scienti�c community
use them. EARTH-C even solves the hardest problems to
parallelize, but for the IBM EARTH-MANNA architecture2.

2X. Tang, �Compiling for Multithreaded Architectures.� PhD thesis,
University of Delaware, Newark, DE, Apr. 1999.

A Quick Review of Some Threading Models:

I Restrict ourselves to library-based techniques.

I Raw library calls.

I The �thread as an active class�.

I The �thread pool� containing those objects.

I The issue: classes used to implement business logic also
implement the operations to be run on the threads. This often
means that the locking is intimately entangled with those
objects, and possibly even the threading logic.

I This makes it much harder to debug these applications. The
question of how to implement multi-threaded debuggers
correctly is still an open question.

Problems Arising from these Models.

In the face of tens, let alone millions, of threads this approach is
untenable:

I Testing the business logic is a nightmare.

I Testing the threading in the face of maintenance upgrades is a
practical impossibility - the code-base becomes locked into
libraries and compilers.

I Performance can become sub-linear due to excessively
conservative locking!

I The business cost of maintaining these balls of mud becomes
untenable.

I We face the failure of using multiple execution units as a
technique to overcome the memory wall.

And there's no other commercial architecture out there to
compete...... YIKES!!!!

What am I looking for?

I decided to set myself a challenge, an experiment if you will, which
may be summarized in this problem statement:

I Is it possible to create a cross-platform thread library that can
guarantee a schedule that is deadlock & race-condition free, is
optimal (mathematically), and also assists in debugging the
business logic, in a general-purpose, imperative language that
has little or no native threading support? Moreover the library
should o�er considerable �exibility, e.g. re�ect the various
types of thread-related costs and techniques.

Further Constraints I set Myself.

I The imperative language used is C++: I know it, and it
doesn't have the library that I want, yet.

I I focused on general purpose threading:

I The situation when loop-bounds or conditions are not known
at compile-time.

I If these are statically computable, then conditions may be
removed, and loops may be statically unrolled, rescheduled,
etc as is well-known in the literature and well implemented in
HPF, much more e�ciently.

I This type of scheduling may be viewed as dynamic scheduling
(run-time) as opposed to static scheduling (potentially
compile-time), where the operations are statically assigned to
execution pipelines, with relatively �xed timing constraints.

I I speci�cally avoided investigating issues and threading relating
to asynchronous I/O.

What is Parallel Pixie Dust (PPD)?
The main design features of PPD are:

I It is based upon futures: in fact it implements a
software-simulation of data-�ow.

I Although �thread-as-an-active-class� exists, the primary
method of controlling threads is thread pools of many di�erent
types (think traits).

I Futures and thread pools can be used to implement a tree-like
thread schedule.

I Parallel versions of certain binary function objects, so that
each operand may be executed in parallel.

I Adaptors are provided for the STL collections to assist with
providing thread-safety.

I By using these adaptors and thread pools, the STL algorithms
can be replaced with multi-threaded versions.

I Amongst other in�uences, PPD was born out of discussions
with Richard Harris and motivated by Kevlin Henney's
presentation regarding threads given circa 2004.

PPD: More Details Regarding the Futures.
The use of futures, termed execution contexts, within PPD is
crucial:

I This hides the data-related locks from the user, as the future
wraps the retrieval of the data with a hidden lock, the
resultant future-like object behaving like a proxy.

I This is an implementation of the split-phase constraint.
I The futures are also key in passing exceptions across thread

boundaries.
I The void return-type optimization has been implemented.
I They may be used to delete that work from the thread-pool.
I They are only stack-based, cannot be heap-allocated and only

const references may be taken.
I This guarantees that there can be no aliassing of these objects.

This provides extremely useful guarantees that will be used
later.

I They can only be created from the returned object when work
is transferred into the pool.

I There are no (Boost) promises!

PPD: The Thread Pools.
Primary method of controlling threads is thread pools, available in
many di�erent types:

I Work-distribution models: e.g. master-slave, work-stealing.
I Size models: e.g. �xed size, unlimited.....
I Threading implementations: e.g. sequential, PThreads, Win32:

I The sequential trait means all threading within the library can
be removed, but maintaining the interface. One simple
recompilation and all the bugs left are yours, i.e. your business
model code.

I A separation of design constraints. Also side-steps the
debugger issue!

I Contains a special queue that contains the work in strict FIFO
order or user-de�ned priority order.

I Threading models: e.g. the cost of performing threading, i.e.
heavyweight like PThreads or Win32.

I Further assist in managing OS threads and exceptions across
the thread boundaries.

I i.e. a PRAM programming model.

PPD: Exceptions.

Passing exceptions across the thread boundary is a thorny issue:

I Futures are used to receive any exceptions that may be thrown
by the mutation when it is executed within the thread pool.

I If the data passed back from a thread-pool is not retrieved
then the future may throw that exception from its destructor!

I The design idea expressed is that the exception is important,
and if something might throw, then the execution context
must be examined to verify that the mutation executed in the
pool succeeded.

I This idea goes further:

I All OS threads managed by the thread pool are destroyed
when the pool terminates. The implication is that if there was
no execution context to pass the exception into, then that
thread will re-throw the exception from its destructor.

I Ugly as hell, but otherwise what happens? Swallow the
exception? That's uglier .

PPD: The Concurrency Assistance.

I'm really trying hard to not say �thread safe� as it isn't!

I The provision of adaptors for the STL collections assist with
providing thread-safety.

I The adaptors are used to provide the locks required by the
thread pool library to maintain thread safety of the adapted
collections.

I In technical terms the type of lock supplied allows me to
specify if the collection supports EREW or CREW operations.

I STL algorithms are neat ways to express lots of potential
parallelism also the size of the collection is dynamic - known
only at run-time.

I Otherwise use HPFs auto-parallelizing loops!
I These collections also assist in making PPD appear to be

�drop in� to sequential code.

I Naturally one would pro�le to determine which areas PPD
might assist with!

PPD: Ugly Details.

I All the traits make the objects look quite complex.

I typedefs are used so that the thread pools and execution
contexts are aliased to more convenient names.

I It requires unde�ned behaviour or broken compilers, for
example:

I Exceptions and multiple threads are unspeci�ed in the current
standard. Fortunately most compilers �do the right thing� and
implement an exception stack per thread, but this is not
standardized.

I Most optimizers in compilers are broken with regard to code
hoisting. This a�ects the use of atomic counters and
potentially intrinsic locks having code that they are guarding
hoisted around them.

I volatile does not solve this, because volatile has been too
poorly speci�ed to rely upon. It does not specify that
operations on a set of objects must come after an operation
on an unrelated object (the lock).

An Examination of Sample Code for STL Usage.

A large code-base that has been developed for over 6 years was
examined for the distribution of STL algorithms used within it to
guide implementation of algorithms within PPD. The target
code-base consisting of over 180 projects was examined for usages
of 66 of the STL algorithms. The distribution is:

fo
r_

e
a

ch
fin

d
fin

d
_

if
s

w
a

p
a

cc
u

m
u

la
te

co
p

y
tr

a
n

s
fo

rm m
in

co
u

n
t

re
p

la
ce

re
m

o
ve

re
ve

rs
e

ra
n

d
o

m
_

s
h

u
ffl

e
p

u
s

h
_

h
e

a
p fil
l

fil
l_

n
ro

ta
te

s
o

rt
lo

w
e

r_
b

o
u

n
d

le
xi

co
g

ra
p

h
ic

a
l_

co
m

p
a

re
co

u
n

t_
if

s
e

a
rc

h
s

w
a

p
_

ra
n

g
e

s
re

m
o

ve
_

if
s

ta
b

le
_

s
o

rt
u

p
p

e
r_

b
o

u
n

d
in

cl
u

d
e

s
m

a
ke

_
h

e
a

p
a

d
ja

ce
n

t_
fin

d
m

is
m

a
tc

h
e

q
u

a
l

co
p

y_
b

a
ck

w
a

rd
ite

r_
s

w
a

p
re

p
la

ce
_

if
re

p
la

ce
_

co
p

y
re

p
la

ce
_

co
p

y_
if

g
e

n
e

ra
te

g
e

n
e

ra
te

_
n

re
m

o
ve

_
co

p
y

re
m

o
ve

_
co

p
y_

if
u

n
iq

u
e

u
n

iq
u

e
_

co
p

y
re

ve
rs

e
_

co
p

y
ro

ta
te

_
co

p
y

p
a

rt
iti

o
n

s
ta

b
le

_
p

a
rt

iti
o

n
p

a
rt

ia
l_

s
o

rt
p

a
rt

ia
l_

s
o

rt
_

co
p

y
n

th
_

e
le

m
e

n
t

e
q

u
a

l_
ra

n
g

e
b

in
a

ry
_

s
e

a
rc

h
m

e
rg

e
in

p
la

ce
_

m
e

rg
e

s
e

t_
u

n
io

n
s

e
t_

in
te

rs
e

ct
io

n
s

e
t_

d
iff

e
re

n
ce

s
e

t_
s

ym
m

e
tr

ic
_

d
iff

e
re

n
ce

s
o

rt
_

h
e

a
p

m
a

x
m

in
_

e
le

m
e

n
t

m
a

x_
e

le
m

e
n

t
n

e
xt

_
p

e
rm

u
ta

tio
n

p
re

v_
p

e
rm

u
ta

tio
n

in
n

e
r_

p
ro

d
u

ct
p

a
rt

ia
l_

s
u

m
a

d
ja

ce
n

t_
d

iff
e

re
n

ce

0

10

20

30

40

50

60

70

80

90

100
100

57

30

19
15 14 13

8 7 7
5 4 4 4

2 2 2 2 2 2 1 1 1 1 1 1 1 1

Histogram of STL Algorithms vs. usage.

Number instances of usage.

STL Algorithm

N
um

be
r o

f u
sa

g
e

s

PPD: The STL-style Parallel Algorithms.

That analysis, amongst other reasons lead me to implement:

1. for_each

2. find_if and find (which is trivially based on find_if)

3. count_if and count (which is trivially based on count_if)

4. transform (both overloads)

5. copy (trivially based upon transform)

6. accumulate (both overloads)

Which means I should cover over 75% of the cases in the code-base
examined.

I Why no merge/sort/swap/min/replace?

I merge/sort are harder because implementing a parallel sort
(e.g. Batcher's bitonic mergesort) well is tricky,

I not got around to the rest.

I So I'm missing an interesting 5% of sorting-type cases.

PPD: Technical Details, Theorems.

Due to the restricted properties of the execution contexts and the
thread pools a few important results arise:

1. The thread schedule created is only an acyclic, directed graph.
In fact it is a tree.

2. From this property I have proved that the schedule PPD
generates is deadlock and race-condition free.3

3. Moreover in implementing the STL-style algorithms those
implementations are optimal, in a mathematical sense, i.e.
there are provable bounds on both the execution time and
minimum number of processors required to achieve that time4.

3Interested in the details? A paper is in editing describibg this, hopefully to
be published in a journal, possibly until then you can download an old draft
from: http://libjmmcg.sourceforge.net/accu09_draft_paper.pdf

4Much of this has come from �E�cient Parallel Algorithms", Alan Gibbons
& Wojciech Rytter, for which I am grateful to Martin Waplington.

PPD: The Key Theorems: Deadlock & Race-Condition Free.

1. Deadlock Free:

Theorem
That if the user refrains from using any other threading-related

items or atomic objects other than those provided by PPD, for

example those in 26 and 28, then they can be guaranteed to have a

schedule free of deadlocks.

2. Race-condition Free:

Theorem
That if the user refrains from using any other threading-related

items or atomic objects other than those provided by PPD, for

example those in 26 and 28, and that the work they wish to mutate

may not be aliased by another object, then the user can be

guaranteed to have a schedule free of race conditions.

PPD: The Key Theorems: Optimal Schedule with Futures.

Theorem
If the user only uses the threading-related items provided by the

execution contexts, then the schedule of the work transferred to

PPD will be executed in an algorithmic order that is between

O(logn) and O(n). In those cases PPD should add at most a

constant order to the execution time of the schedule.

I Note that the user might implement code that orders the
transfers of work in a sub-optimal manner, PPD has very
limited abilities to improve automatically that arrangement of
work.

I This theorem states that once the work has been transferred,
PPD will not add any further sub-optimal algorithmic delays,
but might add some constant-order delay.

PPD: A Corollary: Optimal Schedule with STL-style
algorithms.

Corollary

If the user uses the adaptors, for the STL collections, with

CREW-PRAM semantics, and uses the STL-style algorithms, for

example 28, then the scheduling algorithm implemented within

PPD guarantees the following bounds will hold on that schedule:

1. That the optimal time in which n-items of work on

p-processors will be executed is:
⌈
n

p

⌉
− 1 + log p

2. That the optimal number of processors with which to execute

that work is:
⌈

n

log n

⌉
3. That using at least the optimal number of processors, the

optimal time is:dlog ne

PPD: A Result of the Optimality Theorems.

If PPD is used for scheduling multi-threaded code then:

Corollary

Using any of the features of PPD will add at worst a dlog ne time

to the schedule, which is also the optimal time, then using any

other additional threading schedule is likely to make that aggregate

schedule worse.

I i.e. PPD will not make your chosen parallel schedule
sub-optimal.

I If you can express your parallel schedule in PPD, then those
portions expressed using PPD will use an optimal schedule.

I But that doesn't mean that just because you use PPD, your
chosen parallel schedule will be optimal.

That's enough theory, I'll stop waving my hands! What about using
PPD...

PPD: Basic Example using execution_contexts.

Listing 1: General-Purpose use of a Thread Pool and Future.
s t r u c t res_t {

i n t i ;
} ;

s t r u c t work_type {
t yp ed e f res_t r e s u l t_ t y p e ;
v o i d p r o c e s s (r e s u l t_ t y p e and) {}

} ;

poo l_type poo l (2) ;
async_work work (c r ea to r_t : : i t (work_type (1))) ;
e x e cu t i on_con t ex t c on t e x t (pool<<j o i n a b l e ()<< t im e_ c r i t i c a l ()<<work) ;
poo l . e r a s e (con t e x t) ;
contex t−>i ;

I Note the use of a number of typedefs to assist in making the
code appear to be readable.

I The execution_context is created from adding the wrapped
work to the pool.

I The work must be wrapped due to a lack of compiler support:
the res_t, work_type and process() are some invasive
artifacts of the library.

I Not restricted to process(), alternative member functions
may be speci�ed.

PPD: The typedefs used.

Listing 2: De�nitions of the typedefs in the execution context exam-
ple.
t y p ed e f ppd : : thread_pool<

p o o l_ t r a i t s : : worker_threads_get_work , p o o l_ t r a i t s : : f i x e d_ s i z e
>:: type<

pool_adaptor<g e n e r i c_ t r a i t s : : j o i n a b l e >: : type<
plat fo rm_ap i , heavywe ight_thread ing , p o o l_ t r a i t s : : normal

>
> pool_type ;

t y p ed e f pool_type : : async_work async_work ;
t y p ed e f pool_type : : j o i n a b l e j o i n a b l e ;
t y p ed e f pool_type : : c r e a t e <res_t> c r ea to r_t ;
t y p ed e f pool_type : : p r i o r i t y <

pool_type : : api_params_type : : t i m e_ c r i t i c a l
> t i m e_ c r i t i c a l ;
t y p ed e f pool_type : : e x e cu t i on_con t ex t : : type<res_t> execu t i on_con t ex t ;

I Partial specializations weren't available when I started to
implement the library, so they look more complex.

I These express the �exibility and optimizations available in the
library: this is the primary cause for the apparent complexity of
the typedef for the thread_pool.

PPD: Example using for_each().

Listing 3: For Each with a Thread Pool and Future.
t y p ed e f ppd : : s a f e_co l l n <

vec to r<in t >, ex cep t i on ,
l o c k_ t r a i t s : : c r i t i c a l_ s e c t i o n_ l o c k_ t y p e

> vt r_co l l n_t ;
t y p ed e f pool_type : : e xecu t i on_contex t<vo id> execu t i on_con t ex t ;
s t r u c t accumulate {

s t a t i c i n t l a s t ;
v o i d op e r a t o r () (i n t t) { l a s t+=t ; } ;

} ;

v t r_co l l n_t v ;
v . push_back (1) ;
v . push_back (2) ;
e x e cu t i on_con t ex t c on t e x t (pool<<j o i n a b l e ()<<poo l . for_each (v , accumulate ()) ;
* con t e x t ;

I The safe_colln adaptor provides the lock for the collection,
in this case a simple EREW lock.

I The for_each() returns an execution_context:

I The input collection has a read-lock taken on it.
I Released when all of the asynchronous applications of the

functor have completed, when the read-lock has been dropped.
I It makes no sense to return a random copy of the input functor.

PPD: Example using transform().

Listing 4: Transform with a Thread Pool and Future.
t y p ed e f ppd : : s a f e_co l l n <

vec to r<in t >, ex cep t i on ,
ppd : : l o c k : : rw<l o c k_ t r a i t s >: : decay ing_wr i t e ,
ppd : : l o c k : : rw<l o c k_ t r a i t s >: : r ead

> vt r1_co l l n_t ;

v t r_co l l n_t v ;
v . push_back (1) ;
v . push_back (2) ;
v t r 1_co l l n_t v_out ;
e x e cu t i on_con t ex t c on t e x t (

pool<<j o i n a b l e ()<<poo l . t r an s f o rm (
v , v_out , s t d : : negate<vt r_co l l n_t : : va lue_type >()

)
) ;
* con t e x t ;

I In this case vtr1_colln_t provides a CREW lock on the
collection. v_out is re-sized, then the write-lock atomically
decays to a read-lock.

I The transform() returns an execution_context:
I Released when all of the asynchronous applications of the

unary operation have completed & the read-locks have been
dropped.

I Similarly, it makes no sense to return a random iterator.

PPD: Example using accumulate().

Listing 5: Accumulate with a Thread Pool and Future.
t y p ed e f pool_type : : count_t<

vt r_co l ln_t , l ong
>:: e x e cu t i on_con t ex t e xe cu t i on_con t ex t ;

v t r_co l l n_t v ;
v . push_back (1) ;
v . push_back (2) ;
e x e cu t i on_con t ex t c on t e x t (

poo l . accumulate (v , 1 , s t d : : p lu s<typename v t r_co l l n_t : : va lue_type >())
) ;
contex t−>get () ;

I The accumulate() returns an execution_context:

I Note the use of the count_t type: it contains a specialized
counter that atomically accrues the value using suitable
locking according to the API and type.

I PPD also implements find(), find_if(), count() and
count_if(), but I omitted examples, for brevity.

I Released when all of the asynchronous applications of the
binary operation have completed & the read-lock is dropped.

PPD: Some Thoughts Arising from the Examples.

I That the read-locks on the collections assist the user in
avoiding operations on the collections that might invalidate
iterators on those collections, when they should use EREW
locks.

I That the operations applied to the elements of the collections
by the algorithms are themselves thread-safe in some manner
and do not a�ect the validity of iterators on those collections.

I The user may call many STL-style algorithms in succession,
each one placing work into the thread pool to be operated
upon, and later recall the results or note the completion of
those operations via the returned execution_contexts.

I This allows the user to �ll the thread pool with work and
maintain high throughput.

I But this implies that the work that is done on each iterator is
more costly than the synchronization and thread-management
operations that are incurred. This is unlikely for such simple
algorithms as count() and copy().

PPD: Sequential Operation.
Recall the thread_pool typedef that contained the API and
threading model:

Listing 6: De�nitions of the typedef for the thread pool.
t y p ed e f ppd : : thread_pool<

p o o l_ t r a i t s : : worker_threads_get_work , p o o l_ t r a i t s : : f i x e d_ s i z e
>:: type<

pool_adaptor<g e n e r i c_ t r a i t s : : j o i n a b l e >: : type<
plat fo rm_ap i , heavywe ight_thread ing , p o o l_ t r a i t s : : normal

>
> pool_type ;

To make the thread_pool and therefore all operations on it
sequential, and remove all threading operations, one merely needs
to replace the trait heavyweight_threading with the trait
sequential.

I It is that simple, no other changes need be made to the client
code, so all threading-related bugs have been removed.

I This makes debugging signi�cantly easier by separating the
business logic from the threading algorithms.

PPD: Other Features.

Other parallel algorithms implemented:

I logical_and(), logical_or() and binary_fun() which
would be used to execute the two operands in parallel, in a
similar manner to the similarly-named STL binary functions.

I Examples omitted for brevity.

Able to provide estimates of:

I The optimal number of threads required to complete the
current work-load.

I The minimum time to complete the current work-load given
the current number of threads.

This could provide:

I An indication of soft-real-time performance.

I Furthermore this could be used to implement dynamic tuning
of the thread pools.

PPD: Limitations.

1. PPD assumes an SMP machine-model in which the
inter-thread communication time is only roughly modeled via
types of thread pool.

I The implementation of all of the various types of thread pool
are not complete.

2. The test cases are trivial:

I They have some coverage, but needs more sophisticated test
cases - library may not be bug-free.

3. The missing STL algorithms:

I The lack of merge(), sort(), replace() etc., algorithms
means that PPD misses covering some 5% of instances of
usage of these interesting algorithms in the example code-base.

4. Linking to a good-quality multi-threaded memory manager
would be useful, such as Hoard, but this is optional.

5. It breaks the C++ ISO Standard in certain subtle ways, for
example the logical operations do not short-circuit.

PPD: Cross-Platform Issues.

Not actually cross platform!

I Di�erent qualities of C++ compilers (G++ vs MSVC++)
conspire to defeat this ability (lack of two-phase look up,
compiler bugs, repeated re-compilation against alternate
platforms, etc, etc).

I Always a moving target, upgrading sometimes means
regressions in the compilers.

I This has been a major stumbling block, requiring almost
continual retesting.

I I should not have attempted to design the library with a large
code-base of cross-platform code, and a thin layer to
normalise the APIs. I should have reimplemented the library
for each API.

I This is a quality of implementation issue relating to the
compilers, not an issue relating to the C++ language.

Conclusions.

Recollecting my original problem statement, what has been
achieved?

I A library that assists with creating deadlock and race-condition
free schedules.

I Given the typedefs, a procedural way automatically to convert
STL algorithms into optimal threaded ones.

I The ability to add to the business logic parallel algorithms that
are su�ciently separated to allow relatively simple debugging
and testing of the business logic independently of the parallel
algorithms.

I All this in a traditionally hard-to-thread imperative language,
such as C++, indicating that it is possible to re-implement
such an example library in many other programming languages.

These are, in my opinion, rather useful features of the library!

Future Directions.
Given the issues and limitations of PPD there are further areas that
it would be useful to investigate:

I Most of the library is concerned with CREW-PRAM, but what
about EREW-PRAM constraints?

I Literature indicates that the algorithmic complexity is
increased by O(log(n)).

I GSS(k), or baker's scheduling, would be useful to reduce the
synchronisation costs on thread-limited systems or pools in
which the synchronisation costs are high.

I A performance analysis of using PPD vs. other threading
models using a standard benchmark suite5.

I Some investigation of how PPD might support asynchronous
I/O threading operations.

I How does or even should PPD interact with:

I The C++ 0x standardisation e�orts regarding threading.
I The excellent work in Boost.Threads?

5For example SPEC2006: http://www.specbench.org/cpu2006/Docs/

